[QUOTE=Infomania;48251]Thanks Earl,
I am wondering, if the VBR and Hydril were closed successfully, then, why did the floorhands indicate that when they initially ran up to the rig floor the well was flowing out of the riser, something they had never seen before and had not trained to circumvent. They were only trained to stop a blowout from within the drill string.
I don’t recall the employee names, just recall reading their account of the situation just before the fecal matter hit the fan.[/QUOTE]
I don’t know. Here’s the summary from the DNV report:
Prior to the loss of well control on the evening of April 20, 2010, the Upper Annular (UA) was closed as part of a series of two negative or leak-off tests. Approximately 30 minutes after the conclusion of the second leak-off (negative pressure) test, fluids from the well began spilling onto the rig floor. At 21:47 the standpipe manifold pressure rapidly increased from 1200 psig to 5730 psig. The first explosion was noted as having occurred at 21:49. At 21:56 the Emergency Disconnect Sequence (EDS) was noted to have been activated from the bridge. This was the final recorded well control attempt from the surface before the rig was abandoned at 22:28.
The Upper VBRs were found in the closed position as-received at the Michoud facility. There was no documented means of ROV intervention to close the Upper VBRs. ROV gamma ray scans on May 10, 2010, confirmed that the ST Lock on the port side Upper VBR was closed. Scans of the starboard side ST Lock on the Upper VBRs were inconclusive. Measurements of the ST Lock positions performed at the Michoud facility confirmed that both ST Locks on the Upper VBRs were closed. Evidence supports that the Upper VBRs were closed prior to the EDS activation at 21:56 on April 20, 2010.
A drill pipe tool joint was located between the Upper Annular and the Upper VBRs. With both the Upper Annular and the Upper VBRs closed on the drill pipe, forces from the flow of the well pushed the tool joint into the Upper Annular element. This created a fixed point arresting further upward movement of the drill pipe. The drill pipe was then fixed but able to pivot at the Upper Annular, and horizontally constrained but able to move vertically at the Upper VBRs. Forces from the flow of the well induced a buckling condition on the portion of drill pipe between the Upper Annular and Upper VBRs. The drill pipe deflected until it contacted the wellbore just above the BSRs. This condition would have most likely occurred from the moment the well began flowing and would have remained until either the end conditions changed (change in Upper Annular or Upper VBR state) or the deflected drill pipe was physically altered (sheared). The portion of the drill pipe located between the shearing blade surfaces of the BSRs was off center and held in this position by buckling forces.
As the BSRs were closed, the drill pipe was positioned such that the outside corner of the upper BSR blade contacted the drill pipe slightly off center of the drill pipe cross section. A portion of the pipe cross section was outside of the intended BSR shearing surfaces and would not have sheared as intended. As the BSRs closed, a portion of the drill pipe cross section became trapped between the ram block faces, preventing the blocks from fully closing and sealing. Since the deflection of the drill pipe occurred from the moment the well began flowing, trapping of the drill pipe would have occurred regardless of which means initiated the closure of the BSRs.
Of the means available to close the BSRs, evidence indicates that the activation of the BSRs occurred when the hydraulic plunger to the Autoshear valve was successfully cut on the morning of April 22, 2010. However, on the evidence available, closing of the BSRs through activation of the AMF/Deadman circuits cannot be ruled out.
In the partially closed position, flow would have continued through the drill pipe trapped between the ram block faces and subsequently through the gaps between the ram blocks. When the drill pipe was sheared on April 29, 2010, using the CSRs, the well flow pattern changed to a new exit point. At this point, the flow expanded through the open drill pipe at the CSRs and up the entire wellbore to the BSRs and through the gaps along the entire length of the block faces and around the side packers.
Cheers,
Earl